ovas

 
 
sonora.es.tl
quicaver.blogspot.com
coasar.blogspot.com
sonorainpandora.blogspot.com
xelfos.es.tl
maskasoura.blogspot.com
persok.blogspot.com
niobed.blogspot.com
ofiuro.es.tl
joderdeepfreeze.blogspot.com
 http://astrored.org/enciclopedia/wiki/Cobre
 

Los Isomeros ópticos son muy similares en todas sus propiedades excepto en su comportamiento con respecto ala luz polarizada. Las ondas componentes de un rayo de luz ordinaria vibra en todas las direcciones posibles alrededor de la línea de propagación.
Algunas sustancias cristalinas como la turmalina, el polaroid y el espato de Islandia tienen la propiedad de tamizar las ondas que componen los rayos de luz y dejar aquellas que están vibrando enana dirección determinada.
La luz constituida por ondas que vibran en una sola dirección se conoce como luz polarizada.
Ciertas sustancias tienen la propiedad de cambiar la dirección de la luz polarizada, es decir pueden rotar o girar el plano en que esta vibrando la luz polarizada. De dichas sustancias se dice que son óptimamente activas o que tienen actividad óptica.
Cuando una sustancia es óptimamente activa desvía el plano del a luz polarizada hacia la derecha se llama dextrógira, y se acostumbra indicar por un signo (+). Si la sustancia desvía el plano hacia la izquierda se dice que es levógira. Ejemplo: la glucosa C6H12O6 es dextrógira (+) y la fructosa C6H12O6 (-) de aquí que estos azucares se conozcan también como dextrosa o nebulosa, respectivamente.
Existe una relación entre Isomería óptica y la estructura molecular efectivamente todos los isomeros ópticos presentan una particularidad en sus moléculas, cual es la de contener uno o mas átomos de carbono asimétrico. Se denomina átomo de carbono asimétrico aquel que esta unido a cuatro átomos o grupos son diferentes.
 
  Un complejo quiral es aquel cuya geometría no es superponible con la de su imagen especular. Dos complejos quirales, cada uno de los cuales es la imagen especular del otro se conocen como isómeros ópticos. Los dos isómeros ópticos forman un par de enantiómeros. Los isómeros ópticos se denominan así porque son óptimamente activos, es decir, un enantiómero gira el plano de la luz polarizada en una dirección y el otro rota dicho  
Cuando colocamos una molécula que contenga carbonos asimétricos frente aun espejo la imagen que nos refleja es otra molécula distinta la primera, ya que no son superponibles. Estas moléculas por lo tanto pertenecen a dos compuestos diferentes, dichos compuestos   son isomeros: el uno dextrógiro y el otro levógiro las moléculas que poseen carbonos asimétricos se connotan frente a un espejo en la misma forma que lo hacen las manos. De aquí que átales moléculas se les conozcan como moléculas quirales, término que se deriva del griego cheir: mano.
Si las estructuras moleculares de dos compuestos están relacionados como su objeto y su imagen especular, no son superponibles (como el caso de las manos) dichos compuestos, son isomeros ópticos: uno levógiro y el otro dextrógiro. A estos dos pares de isomeros se conocen también como enantiometros. Podríamos decir que las manos son enantiometros.                                        
Figura 9. (a) y (b) Isómeros ópticos de cis-CoCl2(en)2 . (c) trans-CoCl2(en)2
Los complejos de geometría tetraédrica presentan isómeros ópticos si los cuatro ligandos unidos al átomo metálico central son diferentes. Pero la isomería óptica se observa también en aquellos complejos de geometría octaédrica que poseen ligandos bidentados o quelatantes. Un buen ejemplo es el catión [CoCl2(en)2]2+. Este complejo posee dos isómeros geométricos, el cis y el trans, que exhiben colores diferentes: uno de ellos es violeta y el otro es verde. Como puede observarse en la Figura 9, el isómero cis no puede superimponerse sobre su imagen especular: son dos enantiómeros. Por el contrario, el isómero trans presenta un plano de simetría que hace que las imágenes especulares sean idénticas, por lo que no presenta actividad óptica. De forma general, un compuesto de coordinación presentará quiralidad cuando no posea ningún plano de simetría o centro de inversión.
Los complejos del tipo [M(quelato]3] también existen como enantiómeros. Es el caso de los complejos [Cr(en)3]2+, [Co(en)3]2+ , etc.
Pese a su utilidad, las fórmulas estructurales de Kekulé no terminaban de explicar un tipo de isomería particularmente sutil, en la que intervenía la luz. Considerémosla brevemente.
En 1801, el inglés Thomas Young (1773-1829), personaje extraordinario que fue el primero en entender la fisiología del ojo, había efectuado experimentos que demostraban que la luz se comportaba como si consistiese en pequeñas ondas. Más tarde, hacia 1814, el físico francés Agustín Jean Fresnel (1788-1827) mostró que las ondas de luz pertenecen a un tipo particular conocido como ondas transversales. Estas ondas oscilan perpendicularmente a la dirección en la que viaja la onda en conjunto. La situación se visualiza mejor en relación con las olas del agua, también de naturaleza transversal. Cada partícula de agua se mueve verticalmente, mientras las olas se desplazan horizontalmente.
Las ondas luminosas no están limitadas a una superficie, de manera que no se mueven simplemente hacia arriba y hacia abajo. Pueden moverse a izquierda y derecha, o de nordeste a suroeste, o de noroeste a sudeste. De hecho, hay un número infinito de direcciones en que las ondas de luz pueden oscilar en ángulo recto a la dirección de su desplazamiento. En un rayo de luz ordinaria, algunas ondas están oscilando en una dirección, otras en otra, etc. No hay una dirección preferente.
Pero si ese rayo de luz atraviesa ciertos cristales, el ordenamiento de los átomos dentro de los cristales fuerza al rayo de luz a oscilar en un plano determinado, un plano que permitirá a la luz deslizarse a través de y entre las hileras          de      átomos.
A la luz que oscila en un solo plano se la llama luz polarizada, nombre propuesto en 1808 por el físico francés Etienne Louis Malus (1775-1812). Por esa época, la teoría ondulatoria no había sido aún aceptada, y Malus creía que la luz constaba de partículas con polos norte y sur, y que en la luz polarizada todos los polos estaban orientados en la misma dirección. Esta teoría desapareció rápidamente, pero la expresión quedó, y todavía se usa.
Hasta 1815, las propiedades y el comportamiento de la luz polarizada parecían pertenecer exclusivamente al dominio de la física. En ese año, el físico francés Jean Baptiste Biot (1774-1867) mostró que si la luz polarizada pasa a través de determinados cristales, el plano en que las ondas vibran experimenta un giro. Unas veces gira en el sentido de las agujas del reloj (dextrógiro) y otras en sentido contrario (levógiro).
Entre los cristales que presentaban esta propiedad de actividad óptica estaban los de los compuestos orgánicos. Además, algunos de estos compuestos orgánicos, como son
Determinados azúcares, mostraban actividad óptica incluso cuando no estaban en forma cristalina, sino en solución.
Tal como acabó por descubrirse, había sustancias que diferían solamente en sus propiedades ópticas. Idénticas en lo demás, una de ellas podía girar el plano de luz polarizada en el sentido de las agujas del reloj, y la otra en el sentido contrario. En ocasiones, una tercera podía no girarlo en absoluto. Los isómeros ácido racémico y ácido tartárico, que Berzelius había descubierto, diferían en propiedades         ópticas.
Tales isómeros ópticos no quedaban bien explicados por las fórmulas estructurales de            Kekulé.
El primer indicio de comprensión de la actividad óptica apareció en 1848, cuando el químico francés Louis Pasteur (1822-95) empezó a trabajar con cristales de tartrato amónico sódico.
Pasteur observó que los cristales eran asimétricos: es decir, un lado del cristal tenía una pequeña cara que no se presentaba en el otro. En algunos cristales, la cara se presentaba en el lado derecho, en otros en el izquierdo. Utilizando un cristal de aumento, separó cuidadosamente con pinzas los cristales, y disolvió cada grupo por separado. Las propiedades de cada grupo parecían idénticas, exceptuando la actividad óptica.
Esta teoría resultaba satisfactoria en el caso de los cristales, pero ¿qué decir acerca de la actividad óptica en soluciones? En solución las sustancias no existen como cristales, sino como moléculas individuales flotando al azar. Si la actividad óptica implicaba asimetría, entonces dicha asimetría debía existir en la misma estructura molecular.
Las fórmulas estructurales de Kekulé no mostraban la necesaria asimetría, pero esta falta no invalidaba necesariamente la relación entre asimetría y actividad óptica. Después de todo, las fórmulas estructurales de Kekulé estaban escritas en dos dimensiones sobre la superficie plana de la pizarra o de un trozo de papel. Y, naturalmente, no era de esperar que en realidad las moléculas orgánicas fuesen bidimensionales.
Parecía cierto que los átomos en una molécula hubieran de distribuirse en tres dimensiones, y en ese caso su disposición podría presentar la asimetría precisa para exhibir actividad óptica. Sin embargo ¿cómo aplicar la necesaria tridimensionalidad     a          la         molécula? Los átomos jamás habían sido vistos, y su verdadera existencia podía ser simplemente una ficción convenida, utilizada para explicar las reacciones químicas. ¿Podía tomarse confiadamente su existencia tan literalmente que pudieran distribuirse en tres dimensiones?
Hacía falta un hombre joven para dar el paso siguiente, alguien que no hubiese adquirido todavía la sabía prudencia que viene con los años.

Esta persona fue el joven químico danés Jacobus Hendricus Van't Hoff (1852-1911). En 1874, sin terminar aún su tesis para el doctorado, sugirió atrevidamente que los cuatro enlaces del carbono estaban distribuidos en las tres dimensiones del espacio hacia los cuatro vértices de un tetraedro.

Los cuatro enlaces del átomo de carbono están colocados simétricamente alrededor del átomo, y la asimetría se introduce solamente cuando cada uno de los cuatro enlaces está fijado a un tipo de átomo o grupo de átomos diferentes. Los cuatro enlaces pueden disponerse entonces exactamente de dos maneras distintas, siendo una la imagen especular de la otra. Este modelo aportaba precisamente el tipo de asimetría que Pasteur había encontrado en los cristales.
Casi simultáneamente, el químico francés Joseph Achille Le Bel (1847-1930) publicó una sugerencia similar. El átomo de carbono tetraédrico es conocido a veces como teoría de VantHoff-LeBel.
El átomo tetraédrico explicaba tantas cosas y de forma tan clara que fue rápidamente aceptado. Contribuyó a ello el libro publicado en 1887 por el químico alemán Johannes Adolf Wislicenus (1835-1902), que colocaba la autoridad de un antiguo y muy respetado científico en apoyo de la teoría.
Y sobre todo, no había enmascaramiento de los hechos. Los compuestos que poseían átomos de carbono asimétricos (los que estaban enlazados a cuatro grupos diferentes) poseían actividad óptica, mientras que los que no poseían tales átomos, carecían de ella. Además, el número de isómeros ópticos era siempre igual al número predicho por la teoría de Van'tHoff-LeBel.
En las últimas décadas del siglo xix la concepción tridimensional de los enlaces se extendió más allá de los átomos de carbono.
El químico alemán Viktor Meyer (1848-97) mostró que los enlaces de los átomos de nitrógeno, concebidos en tres dimensiones, podían explicar también ciertos tipos de isomerías ópticas. Por su parte, el químico inglés William Jackson Pope (1870-1939) mostró que lo mismo era aplicable a otros átomos tales como los de azufre, selenio y estaño, el germano-suizo Alfred Werner (1866-1919) añadió el cobalto, cromo, rodio y otros metales.
(A comienzos de 1891, Werner desarrolló una teoría de la coordinación de la estructura molecular. Esta idea, según él, le vino en sueños, despertándole a las dos de la madrugada con un sobresalto. Esencialmente, esta teoría mantiene que las relaciones estructurales entre átomos no tienen por qué estar restringidas a los enlaces ordinarios de valencia, sino que -particularmente en ciertas moléculas inorgánicas relativamente complejas- los grupos de átomos podrían distribuirse alrededor de algún átomo central, de acuerdo con ciertos principios geométricos que no parecen tener en cuenta el enlace de valencia ordinario. Pasó casi medio siglo antes de que las nociones de valencia se afinasen lo bastante como para incluir tanto los compuestos simples que se ajustaban a las nociones de Frankland y Kekulé, como los compuestos de coordinación de Werner.)
La idea de estructura tridimensional llevó rápidamente a ulteriores avances. Viktor Meyer había demostrado que si bien las agrupaciones de átomos ordinariamente pueden girar en libertad alrededor de un único enlace que las une al resto de la molécula, el tamaño de los grupos de átomos cercanos podría impedir a veces tal rotación. Esta situación, llamada impedimento esférico, puede compararse a la de una puerta que normalmente gira libremente sobre sus goznes, pero que queda bloqueada por algún obstáculo colocado detrás de ella. Pope llegó a mostrar que a consecuencia del impedimento estérico era posible que una molécula fuera asimétrica. Podría entonces mostrar actividad óptica, aun cuando ninguno de los átomos constituyentes fuese estrictamente asimétrico.
El químico alemán Johann Friedrich Wilhelm Adolf von Baeyer (1835-1917) utilizó en 1885 la representación tridimensional para dibujar átomos de carbono fijos     a          anillos   planos.
El más espectacular de todos los trabajos fue quizás el realizado en 1880 por el químico alemán Emil Fischer (1852-1919) sobre la química de los azúcares simples. Varios azúcares bien conocidos comparten la misma fórmula empírica C 6 H 12 0 6 . También tienen muchas propiedades en común, pero se diferencian en otras, especialmente en la magnitud de su actividad óptica.
Fischer demostró que cada uno de estos azúcares tenía cuatro átomos de carbonos asimétricos, y que en base a la teoría de Van't Hoff-Le Bel habría entonces dieciséis isómeros ópticos. Estos isómeros se dispondrían en ocho pares; en cada par un isómero giraría el plano de la luz polarizada en el sentido de las agujas del reloj, exactamente con la misma magnitud con que el otro isómero la giraría en el sentido contrario.
Fischer procedió a establecer la disposición exacta de los átomos en cada uno de los dieciséis isómeros. El hecho de haberse hallado precisamente dieciséis isómeros de azúcares con seis carbonos, divididos en ocho pares, constituye una fuerte prueba en favor de la validez de la teoría de Van't Hoff-Le Bel. Esta misma precisión en las predicciones se da en el caso de los otros tipos de azúcares, de aminoácidos y de cualquier otro tipo de compuestos.

 
 

Hoy habia 1 visitantes (1 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis